5 research outputs found

    Enhancing explainability and scrutability of recommender systems

    Get PDF
    Our increasing reliance on complex algorithms for recommendations calls for models and methods for explainable, scrutable, and trustworthy AI. While explainability is required for understanding the relationships between model inputs and outputs, a scrutable system allows us to modify its behavior as desired. These properties help bridge the gap between our expectations and the algorithm’s behavior and accordingly boost our trust in AI. Aiming to cope with information overload, recommender systems play a crucial role in filtering content (such as products, news, songs, and movies) and shaping a personalized experience for their users. Consequently, there has been a growing demand from the information consumers to receive proper explanations for their personalized recommendations. These explanations aim at helping users understand why certain items are recommended to them and how their previous inputs to the system relate to the generation of such recommendations. Besides, in the event of receiving undesirable content, explanations could possibly contain valuable information as to how the system’s behavior can be modified accordingly. In this thesis, we present our contributions towards explainability and scrutability of recommender systems: • We introduce a user-centric framework, FAIRY, for discovering and ranking post-hoc explanations for the social feeds generated by black-box platforms. These explanations reveal relationships between users’ profiles and their feed items and are extracted from the local interaction graphs of users. FAIRY employs a learning-to-rank (LTR) method to score candidate explanations based on their relevance and surprisal. • We propose a method, PRINCE, to facilitate provider-side explainability in graph-based recommender systems that use personalized PageRank at their core. PRINCE explanations are comprehensible for users, because they present subsets of the user’s prior actions responsible for the received recommendations. PRINCE operates in a counterfactual setup and builds on a polynomial-time algorithm for finding the smallest counterfactual explanations. • We propose a human-in-the-loop framework, ELIXIR, for enhancing scrutability and subsequently the recommendation models by leveraging user feedback on explanations. ELIXIR enables recommender systems to collect user feedback on pairs of recommendations and explanations. The feedback is incorporated into the model by imposing a soft constraint for learning user-specific item representations. We evaluate all proposed models and methods with real user studies and demonstrate their benefits at achieving explainability and scrutability in recommender systems.Unsere zunehmende Abhängigkeit von komplexen Algorithmen für maschinelle Empfehlungen erfordert Modelle und Methoden für erklärbare, nachvollziehbare und vertrauenswürdige KI. Zum Verstehen der Beziehungen zwischen Modellein- und ausgaben muss KI erklärbar sein. Möchten wir das Verhalten des Systems hingegen nach unseren Vorstellungen ändern, muss dessen Entscheidungsprozess nachvollziehbar sein. Erklärbarkeit und Nachvollziehbarkeit von KI helfen uns dabei, die Lücke zwischen dem von uns erwarteten und dem tatsächlichen Verhalten der Algorithmen zu schließen und unser Vertrauen in KI-Systeme entsprechend zu stärken. Um ein Übermaß an Informationen zu verhindern, spielen Empfehlungsdienste eine entscheidende Rolle um Inhalte (z.B. Produkten, Nachrichten, Musik und Filmen) zu filtern und deren Benutzern eine personalisierte Erfahrung zu bieten. Infolgedessen erheben immer mehr In- formationskonsumenten Anspruch auf angemessene Erklärungen für deren personalisierte Empfehlungen. Diese Erklärungen sollen den Benutzern helfen zu verstehen, warum ihnen bestimmte Dinge empfohlen wurden und wie sich ihre früheren Eingaben in das System auf die Generierung solcher Empfehlungen auswirken. Außerdem können Erklärungen für den Fall, dass unerwünschte Inhalte empfohlen werden, wertvolle Informationen darüber enthalten, wie das Verhalten des Systems entsprechend geändert werden kann. In dieser Dissertation stellen wir unsere Beiträge zu Erklärbarkeit und Nachvollziehbarkeit von Empfehlungsdiensten vor. • Mit FAIRY stellen wir ein benutzerzentriertes Framework vor, mit dem post-hoc Erklärungen für die von Black-Box-Plattformen generierten sozialen Feeds entdeckt und bewertet werden können. Diese Erklärungen zeigen Beziehungen zwischen Benutzerprofilen und deren Feeds auf und werden aus den lokalen Interaktionsgraphen der Benutzer extrahiert. FAIRY verwendet eine LTR-Methode (Learning-to-Rank), um die Erklärungen anhand ihrer Relevanz und ihres Grads unerwarteter Empfehlungen zu bewerten. • Mit der PRINCE-Methode erleichtern wir das anbieterseitige Generieren von Erklärungen für PageRank-basierte Empfehlungsdienste. PRINCE-Erklärungen sind für Benutzer verständlich, da sie Teilmengen früherer Nutzerinteraktionen darstellen, die für die erhaltenen Empfehlungen verantwortlich sind. PRINCE-Erklärungen sind somit kausaler Natur und werden von einem Algorithmus mit polynomieller Laufzeit erzeugt , um präzise Erklärungen zu finden. • Wir präsentieren ein Human-in-the-Loop-Framework, ELIXIR, um die Nachvollziehbarkeit der Empfehlungsmodelle und die Qualität der Empfehlungen zu verbessern. Mit ELIXIR können Empfehlungsdienste Benutzerfeedback zu Empfehlungen und Erklärungen sammeln. Das Feedback wird in das Modell einbezogen, indem benutzerspezifischer Einbettungen von Objekten gelernt werden. Wir evaluieren alle Modelle und Methoden in Benutzerstudien und demonstrieren ihren Nutzen hinsichtlich Erklärbarkeit und Nachvollziehbarkeit von Empfehlungsdiensten

    FAIRY: A Framework for Understanding Relationships between Users' Actions and their Social Feeds

    Full text link
    Users increasingly rely on social media feeds for consuming daily information. The items in a feed, such as news, questions, songs, etc., usually result from the complex interplay of a user's social contacts, her interests and her actions on the platform. The relationship of the user's own behavior and the received feed is often puzzling, and many users would like to have a clear explanation on why certain items were shown to them. Transparency and explainability are key concerns in the modern world of cognitive overload, filter bubbles, user tracking, and privacy risks. This paper presents FAIRY, a framework that systematically discovers, ranks, and explains relationships between users' actions and items in their social media feeds. We model the user's local neighborhood on the platform as an interaction graph, a form of heterogeneous information network constructed solely from information that is easily accessible to the concerned user. We posit that paths in this interaction graph connecting the user and her feed items can act as pertinent explanations for the user. These paths are scored with a learning-to-rank model that captures relevance and surprisal. User studies on two social platforms demonstrate the practical viability and user benefits of the FAIRY method.Comment: WSDM 201

    Learning to un-rank : quantifying search exposure for users in online communities

    Get PDF
    Search engines in online communities such as Twitter or Facebook not only return matching posts, but also provide links to the profiles of the authors. Thus, when a user appears in the top-k results for a sensitive keyword query, she becomes widely exposed in a sensitive context. The effects of such exposure can result in a serious privacy violation, ranging from embarrassment all the way to becoming a victim of organizational discrimination. In this paper, we propose the first model for quantifying search exposure on the service provider side, casting it into a reverse k-nearest-neighbor problem. Moreover, since a single user can be exposed by a large number of queries, we also devise a learning-to-rank method for identifying the most critical queries and thus making the warnings user-friendly. We develop efficient algorithms, and present experiments with a large number of user profiles from Twitter that demonstrate the practical viability and effectiveness of our framework

    ELIXIR: Learning from User Feedback on Explanations to Improve Recommender Models

    Get PDF
    System-provided explanations for recommendations are an important component towards transparent and trustworthy AI. In state-of-the-art research, this is a one-way signal, though, to improve user acceptance. In this paper, we turn the role of explanations around and investigate how they can contribute to enhancing the quality of generated recommendations themselves. We devise a human-in-the-loop framework, called ELIXIR, where user feedback on explanations is leveraged for pairwise learning of user preferences. ELIXIR leverages feedback on pairs of recommendations and explanations to learn user-specific latent preference vectors, overcoming sparseness by label propagation with item-similarity-based neighborhoods. Our framework is instantiated using generalized graph recommendation via Random Walk with Restart. Insightful experiments with a real user study show significant improvements in movie and book recommendations over item-level feedback.Comment: WWW 2021, 11 page
    corecore